Mechanical Ventilation of the Patient with Neuromuscular Disease

Dean Hess PhD RRT
Associate Professor of Anesthesia, Harvard Medical School
Assistant Director of Respiratory Care, Massachusetts General Hospital
Editor in Chief, Respiratory Care
Neuromuscular Diseases Causing Respiratory Failure

- **Cerebral cortex**: stroke, tumor
- **Brainstem**: drugs, hemorrhage, anoxia, polio, multiple sclerosis, primary hypoventilation
- **Spinal cord**: trauma, tumor, tetanus
- **Motor nerves**: motor neuron disease (ALS, SMA), Guillain-Barré, critical illness neuropathy
- **Neuromuscular junction**: drugs, myasthenia gravis, toxins (botulism, snake bite)
- **Myopathies**: muscular dystrophy, myotonic dystrophy, Pompe disease
Guillain-Barre (reversible) and myasthenia gravis (treatable) are most common

Inspiratory/expiratory muscle weakness, upper-airway dysfunction

Bedside PFTs can predict need for mechanical ventilation:
- Vital capacity <15 mL/kg or < 1 L
- Maximal inspiratory pressure > -30 cm H₂O
- Maximal expiratory pressure < 40 cm H₂O

Insufficient evidence to recommend NIV in patients with Guillain-Barré syndrome or myasthenia gravis

Mehta, Respir Care 2006; 51:1016
ICU-Acquired Muscle Weakness

- Polyneuropathy and myopathy (coexist, myopathy most common); occurs in 25% of ventilated patients
- Risk factors: sepsis, corticosteroids, hyperglycemia, neuromuscular blockade, severity of illness
- Associated with adverse outcomes: mortality, longer time on ventilator, increased length of stay
Mobility in the ICU

Needham, JAMA 2008
Morris, Crit Care Med 2008; 36:2238
Burtin Crit Care Med 2009; 37:2499

Bailey, Crit Care Med 2007; 35:139
Schweikert, Lancet 2009; 373: 1874
Neuromuscular Respiratory Failure

- Inability to Ventilate
 - Inspiratory muscle weakness

- Aspiration Risk
 - Upper-airway muscle weakness

- Inability to Cough
 - Expiratory muscle weakness
 - Upper-airway muscle (glottic) weakness
 - Inspiratory muscle weakness

Benditt, Respir Care 2006; 51:829
Respiratory Muscle Training

- Training can increase respiratory muscle strength and endurance
 Leith and Bradley, J Appl Physiol 1976; 41:508;
 Lotters, Eur Respir J 2002;20:570

- Training occurs slowly – weeks?
 (unlikely the result of a few SBTs)
Cough Assist Techniques

- Evaluation of Cough
 - Cough flow < 160 L/min: initiate cough assist
 - Cough flow < 270 L/min: risk for secretion retention
 - Low cough flow associated with extubation failure
 (Salam et al, Intensive Care Med 2004)

- Cough Assist Techniques
 - Hyperinflation
 - Manually assisted cough
 - Mechanical In-Exsufflator (Cough Assist)
Noninvasive Ventilation
NIV and ALS

Patients with normal or moderately impaired bulbar function

Patients with severe bulbar impairment

Bourke, Lancet Neurol 2006;5:140
Indications for Chronic NIV

- Symptoms (fatigue, dyspnea, morning headache, orthopnea) and one of the following:
 - $\text{PaCO}_2 \geq 45 \text{ mm Hg}$
 - Nocturnal desaturation $\leq 88\%$ for 5 consecutive min
 - For progressive neuromuscular disease, maximal inspiratory pressures $> -60 \text{ cm H}_2\text{O}$ or FVC $< 50\%$ predicted

Chest 1999; 116: 521–534
Full-Time Noninvasive Ventilation: Possible and Desirable

Joshua O Benditt MD

Respir Care 2006; 51:1005
How to Choose Settings for NIV

- **Empiric**
 - Short-term symptoms: comfort, accessory muscle use
 - Long-term symptoms: less morning headache, fatigue, and daytime sleepiness
- **Physiologic:** tidal volume, gas exchange
- **Polysomnography**
 - Long wait time
 - Sleep labs less familiar with NMD than OSA
- **Overnight oximetry**
 - Does not assess sleep quality
NIV Settings for NMD

- Back-up rate (periodic breathing)
- Trigger, cycle, rise time per patient comfort
- EPAP: 3 – 4 cm H$_2$O (low as possible unless OSA)
- IPAP: 8 – 15 cm H$_2$O as tolerated; may need higher settings with acute illness
- Ramp off
- Unclear role for newer modes like AVAPS
NIV Settings for NMD

- FIO\textsubscript{2}: room air unless acute illness
- Humidity: routine
- Inhaled bronchodilators and steroids not necessary
- Nasal symptoms: humidity, OTC remedies, nasal steroids and anticholinergics
Approaches to Intolerance: Chronic Use

- Start with low settings
- Practice wearing mask without pressure
- Short periods with distraction (watching TV)
- Use during naps
- Short times at night, gradually increasing
- Personal motivation, family support
- Knowledge of the evidence (using NIV is life prolonging)
Indications for Tracheostomy

- Patient preference
- Inability to tolerate NIV or failing NIV
- Bulbar involvement: aspiration, pneumonia
- Inadequate cough despite cough assist
- Consider need for resources to manage trach and ventilator
Ventilator Settings for Trach Patient

- Volume control ventilation (avoid pressure support and pressure control)
- Rate and tidal volume per comfort, gas exchange, and safety
- PEEP 5 cm H$_2$O; room air
- Cuff deflation for leak speech; adjust PEEP, tidal volume, inspiratory time to improve speech
- Cough assist (MIE) for airway clearance
Ventilator Settings for Trach Patient

- Choose ventilator for size (fits on wheelchair) and battery life
- Transition to homecare ventilator in acute care setting
- Do not wean patient with progressive disease (e.g., ALS)
- Use lung protective ventilation strategies if patient develops acute lung injury (Crit Care Med 2007; 35:1815)
Summary

- A number of acute and chronic neuromuscular diseases have respiratory muscle involvement.
- Invasive and noninvasive ventilation, and airway clearance, can be life prolonging.